Hi,
I was actually trying to run the WRF model using 2 configurations -
1) 48 hr duration (2022-07-18_12:00:00 to 2022-07-20_12:00:00)
2) 48 hr duration but in 3hr chunks (Simulation_1: "2022-07-18_12:00:00 to 2022-07-18_15:00:00", ... ,Simulation_16: "2022-07-20_09:00:00 to 2022-07-20_12:00:00")
even after Aggregating (curr_chunk_rain = prev_chunk_rain + curr_chunk_rain)
same met data(2022-07-18_12:00:00 to 2022-07-20_12:00:00) and namelist files(except the time ranges)
So, when I observed the output of both these simulations for the first 3 hrs, I observed that for RAINNC variable there was a huge difference in the output of both these simulations though they were actually running for same region and same duration(first 3 hrs).
Here is the Output of both these for your reference -
1) 48 hr duration (2022-07-18_12:00:00 to 2022-07-20_12:00:00) -
_c3 Column = "RAINNC" in mm
even after Aggregating (curr_chunk_rain = prev_chunk_rain + curr_chunk_rain)
_c3 Column = "RAINNC" in mm
Can you please explain why is this happening? And also is there a way to minimize the difference b/w approach1 and approach2?
I was actually trying to run the WRF model using 2 configurations -
1) 48 hr duration (2022-07-18_12:00:00 to 2022-07-20_12:00:00)
2) 48 hr duration but in 3hr chunks (Simulation_1: "2022-07-18_12:00:00 to 2022-07-18_15:00:00", ... ,Simulation_16: "2022-07-20_09:00:00 to 2022-07-20_12:00:00")
even after Aggregating (curr_chunk_rain = prev_chunk_rain + curr_chunk_rain)
same met data(2022-07-18_12:00:00 to 2022-07-20_12:00:00) and namelist files(except the time ranges)
So, when I observed the output of both these simulations for the first 3 hrs, I observed that for RAINNC variable there was a huge difference in the output of both these simulations though they were actually running for same region and same duration(first 3 hrs).
Here is the Output of both these for your reference -
1) 48 hr duration (2022-07-18_12:00:00 to 2022-07-20_12:00:00) -
_c3 Column = "RAINNC" in mm
2) 48 hr duration but in 3hr chunks (Simulation_1: "2022-07-18_12:00:00 to 2022-07-18_15:00:00", ... ,Simulation_16: "2022-07-20_09:00:00 to 2022-07-20_12:00:00") -2023-09-19 06:00:18,336 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T12:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,340 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T13:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,343 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T14:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,346 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T15:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,347 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T16:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,349 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T17:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,351 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T18:00:00.000', '_c3': '0.0'}
2023-09-19 06:00:18,353 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T19:00:00.000', '_c3': '0.0026964406'}
2023-09-19 06:00:18,355 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T20:00:00.000', '_c3': '0.009049861'}
2023-09-19 06:00:18,356 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T21:00:00.000', '_c3': '25.35142'}
2023-09-19 06:00:18,357 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T22:00:00.000', '_c3': '32.02499'}
2023-09-19 06:00:18,359 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T23:00:00.000', '_c3': '32.032722'}
2023-09-19 06:00:18,361 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-19T00:00:00.000', '_c3': '32.369686'}
even after Aggregating (curr_chunk_rain = prev_chunk_rain + curr_chunk_rain)
_c3 Column = "RAINNC" in mm
For example in the below files if you will observe then at TIMESTAMP="2022-07-18T21:00:00.000" the RAIN value for appoach1 is 25.35142mm and for approach2 it is 8.5701403E-4 nowhere near the value for single-core. And these values keep diverging as we go further.2023-09-19 06:00:15,350 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T12:00:00.000', '_c3': '0.0', '_c4': '1.6581456E9'}
2023-09-19 06:00:15,352 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T13:00:00.000', '_c3': '0.0', '_c4': '1.6581492E9'}
2023-09-19 06:00:15,353 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T14:00:00.000', '_c3': '0.0', '_c4': '1.6581528E9'}
2023-09-19 06:00:15,354 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T15:00:00.000', '_c3': '0.0', '_c4': '1.6581564E9'}
2023-09-19 06:00:15,356 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T16:00:00.000', '_c3': '0.0', '_c4': '1.65816E9'}
2023-09-19 06:00:15,359 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T17:00:00.000', '_c3': '0.0', '_c4': '1.6581636E9'}
2023-09-19 06:00:15,360 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T18:00:00.000', '_c3': '0.0', '_c4': '1.6581672E9'}
2023-09-19 06:00:15,362 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T19:00:00.000', '_c3': '0.0', '_c4': '1.6581708E9'}
2023-09-19 06:00:15,363 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T20:00:00.000', '_c3': '1.8566412E-5', '_c4': '1.6581744E9'}
2023-09-19 06:00:15,365 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T21:00:00.000', '_c3': '8.5701403E-4', '_c4': '1.658178E9'}
2023-09-19 06:00:15,366 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T22:00:00.000', '_c3': '0.03614223375916481', '_c4': '1.6581816E9'}
2023-09-19 06:00:15,368 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-18T23:00:00.000', '_c3': '0.142098069190979', '_c4': '1.6581852E9'}
2023-09-19 06:00:15,370 - aggregator - INFO - {'_c0': '36.44705', '_c1': '-83.300964', '_c2': '2022-07-19T00:00:00.000', '_c3': '0.14225231111049652', '_c4': '1.6581888E9'}
Can you please explain why is this happening? And also is there a way to minimize the difference b/w approach1 and approach2?